3 resultados para Antioxidant response

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: The aim of this study was to examine if erythropoietin (EPO) has the potential to act as a biological antioxidant and determine the underlying mechanisms.

Methods: The rate at which its recombinant form (rHuEPO) reacts with hydroxyl (HO center dot), 2,2-diphenyl-1-picrylhydrazyl (DPPH center dot) and peroxyl (ROO center dot) radicals was evaluated in-vitro. The relationship between the erythopoietic and oxidative-nitrosative stress response to poikilocapneic hypoxia was determined separately in-vivo by sampling arterial blood from eleven males in normoxia and following 12 h exposure to 13% oxygen. Electron paramagnetic resonance spectroscopy, ELISA and ozone-based chemiluminescence were employed for direct detection of ascorbate (A(center dot-)) and N-tert-butyl-a-phenylnitrone spin-trapped alkoxyl (PBN-OR) radicals, 3-nitrotyrosine (3-NT) and nitrite (NO2-).

Results: We found rHuEPO to be a potent scavenger of HO center dot (k(r) = 1.03-1.66 x 10(11) M-1 s(-1)) with the capacity to inhibit Fenton chemistry through catalytic iron chelation. Its ability to scavenge DPPH. and ROO center dot was also superior compared to other more conventional antioxidants. Hypoxia was associated with a rise in arterial EPO and free radical-mediated reduction in nitric oxide, indicative of oxidative-nitrosative stress. The latter was confirmed by an increased systemic formation of A(center dot-), PBN-OR, 3-NT and corresponding loss of NO2- (P <0.05 vs. normoxia). The erythropoietic and oxidative-nitrosative stress responses were consistently related (r =-0.52 to 0.68, P <0.05).

Conclusion: These findings demonstrate that EPO has the capacity to act as a biological antioxidant and provide a mechanistic basis for its reported cytoprotective benefits within the clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The phenotype of the antioxidant and pro-angiogenicprotein haptoglobin (Hp) predicts cardiovascular disease risk andtreatment response to antioxidant vitamins in individuals withdiabetes. Our objective was to determine whether Hp phenotypeinfluences pre-eclampsia risk, or the efficacy of vitamins C and Ein preventing pre-eclampsia, in women with type-1 diabetes.
Design This is a secondary analysis of a randomised controlledtrial in which women with diabetes received daily vitamins C andE, or placebo, from 8 to 22 weeks of gestation until delivery.
Setting Twenty-five antenatal metabolic clinics across the UK (innorth-west England, Scotland, and Northern Ireland).
Population Pregnant women with type-1 diabetes.
Methods Hp phenotype was determined in white women whocompleted the study and had plasma samples available (n = 685).
Main outcome measure Pre-eclampsia.
Results Compared with Hp 2-1, Hp 1-1 (OR 0.59, 95% CI 0.30–1.16) and Hp 2-2 (OR 0.93, 95% CI 0.60–1.45) were notassociated with significantly decreased pre-eclampsia risk afteradjusting for treatment group and HbA1c at randomisation. Ourstudy was not powered to detect an interaction between Hpphenotype and treatment response; however, our preliminaryanalysis sugge sts that vitamins C and E did not prevent pre-eclampsia in women of any Hp phenotype (Hp 1-1, OR 0.77, 95%CI 0.22–2.71; Hp 2-1, OR 0.81, 95% CI 0.46–1.43; Hp 2-2, 0.67,95% CI 0.34–1.33), after adjusting for HbA1c at randomisation.
Conclusions The Hp phenotype did not significantly affect pre-eclampsia risk in women with type-1 diabetes.